METEOROLOGICAL AND CLIMATOLOGICAL DATA FOR JUNE 1943 [Climate and Crop Weather Division, J. B. KINCER, in charge] ## AEROLOGICAL OBSERVATIONS NOTICE.—Effective with the December 1942 issue, the publication of table 1 (RAOB summaries) was discontinued indefinitely.—EDITOR. Table 2.—Free-air resultant winds based on pilot-balloon observations made near 5 p. m. (75th meridian time) during June 1943. Directions given in degrees from north ($N=360^{\circ}$, $E=90^{\circ}$, $S=180^{\circ}$, $W=270^{\circ}$). Velocities in meters per second | | Abile | ene, | A1 | buq | uer- | Atlanta, | | | Billings, | | | Bismarck,
N. Dak. | | | Boise, | | Browns-
ville, Tex. | | Buffalo,
N. Y. | | | Burling-
ton, Vt. | | | Charles-
ton, S. C.
(17 m.) | | | Cincin-
nati, Ohio | | Denver, | | | El Paso | | | | | | |---|---|---|--|--|--|--|--|---|--|--|--|--|--|---|--|--|--|--|--|--|--|---|--|--|--|--|--|---|---|--|--|--|--|--|--|--|---|---| | 4 14 24 3 - | (538 t | x.
m.) | (1 | ,N.I
,630 | m.) | | Ga.
299 I | n.) | (1 | Mon
,095 I | | (! | . Da
512 n | ik.
1.) | | 1dah
870 n | | | lle, 'I
(7 m. | | (2 | N. Y | 1.) | (1 | 32 m | 1.) | | n, S.
17 m | | (1 | fi, O
152 m | ı.)
— | 1,6 | Colo
27 m | 1.) | (1, | Tex.
196 r | 1.) | | Altitude
(meters)
m. s. i. | Observations
Direction | Velocity | Observations | Direction | lI- | Direction | l | Observations | Direction | Velocity | | 8urface | | . - <u>:</u> - <u>:</u> | 30
30
30
26
25
23 | 191
220
214
220
243
248
243
249
247 | | 28
28
27
25
24
22
17
13 | 8
347
241
284
304
278
256
253
245
211 | 0.4
1.3
0.8
1.8
1.5
1.6
2.1
3.4 | 30
29
26
22
18
16
14 | 24
 | 10. 1 | 29
27
23
20
19
13
10 | 264
229
228
250
252
255
253
250
256 | 0. 5
0. 8
1. 4
2. 5
5. 6
8. 4
13. 5
14. 7
16. 2 | 30
30
30
29
27
24
24 | 316
317
314
283
244
228
222
224
232
243 | 4. 2 | 30
25
23
22
22
19
18
15
15 | 143
152
154
139
148
147
165
158
174
115 | 8.7
6.0
5.4
3.7
6.4
3.2
3.2
3.2
3.2
3.2
3.2
3.2 | 30
30
28
26
24
23
19 | 234
254
253
260
267
274
284 | 3. 5
6. 3
7. 8
8. 3
9. 9
10. 0
11. 5 | 30
30
28
25
22
19
18 | 283
272
277
284
287
291
298 | 1. 8
3. 7
6. 4
8. 8
11. 8
14. 2
15. 4 | 29
29
28
27
24
23
21
18
15 | 165
185
198
218
280
313
338
40
334
23 | 0.4 | 16
11 | 224
263
265
265
272
275
274
286
281 | 1.3
2.9
3.9
4.7
4.4
4.8
4.9
5.2
4.6 | 30
30
30
30
25
22
16
11 | 250 _i | 1.0
0.9
2.1
7.2
13.0
14.5 | 30
30
30
28
26
19 | 218
224
227
232
224
231
235
254
241 | 2. 2
2. 0
2. 4
2. 9
2. 8
3. 7
5. 5
6. 9
7. 6
12. 3 | | 4 2444 - 3 - | Ely, Nev.
(1,910 m.) | | y, Nev. Grand
Junction,
Colo.
(1,413 m.) | | Greensbe
N. C.
(271 m | | | Havre,
Mont.
(767 m.) | | | Jackson-
ville, Fla.
(16 m.) | | Joliet, Ill.
(178 m) | | Las Vegas,
Nev.
(573 m.) | | Little Rock,
Ark.
(88 m.) | | Medford,
Oreg.
(410 m.) | | Miami,
Fla.
(15 m.) | | Mobile,
Ala.
(66 m.) | | Nashville,
Tenn.
(194 m.) | | New York,
N. Y.
(15 m.) | | ork,
.) | | | | | | | | | | | Altitude
(meters)
M. s. l. | Observations
Direction | Velocity | Observations | Direction | Surface | 29 210
29 207
29 199
27 209
23 217
19 214
15 227
15 225
13 221
11 220 | | | 268
274
261
230
227
224
232
239 | | 27 | 194
206
225
225
271
288
286
291
295
290
296
324 | 1.6
2.3
2.7
2.5
3.5
4.9
5.0
5.5
4.3
5.6 | | 256
270
230
233
249
245 | 0. 4
1. 4
1. 7
4. 0
6. 4
8. 3 | 29
29
28
26
26
25
24
22
16
15 | 126
142
176
190
187
172
134
101
72
76
30 | 3.8
4.6
3.0
1.9
1.6
1.5
0.8
1.9
3.4
4.3
3.4 | 29
29
29
26
21
17
15 | . 227
232
236
240
252
264
268 | 2.7
4.0
5.2
5.6
6.6
6.5
7.6 | 30
30
30
30
30
30
27
24
23
21
14 | | 5.8
6.2
6.5
8.1
11.4
14.8
17.1
19.6
27.4
25.8 | 30
30
29
27
24
23
19
13
10 | 191
196
209
218
228
238
245
272
274
257 | 1. 5
2. 7
2. 6
3. 0
3. 3
3. 6
3. 6
3. 7
4. 4
4. 1 | 30
30
29
26
24
22
19
16
16
13 | 317
318
317
301
277
247
231
285
310
305
802
299 | 1.6
2.0
2.2
2.5
2.5
2.5
2.5
5.1
5.2
7.8 | 29
29
29
29
27
25
23
19
19
18
14 | 115
123
116
101
92
101
115
102
70
64
44
48 | 5. 6
4. 6
3. 2
3. 0
2. 7
3. 0 | 27
25
24
21
19
15
10 | 118 | 2. 4
4. 1
2. 8
0. 3
0. 2
1. 0
1. 8
3. 1
3. 3 | 30
30
30
28
26
26
21
18
15
13 | 259 | 1. 2
2. 7
3. 0
3. 0
4. 9
5. 9
6. 1
5. 3
5. 0
6. 8
9. 7 | | 294 | 7. 2
8. 7
10. 4 | | | Cali | Oakland,
Calif.
(8. m.) | | Calif. City, Okla. | | Omaha,
Nebr.
(306 m.) | | Ariz. | | iz. S. Dak. | | k. i | 8t. Louis,
Mo.
(181 m.) | | St. Paul,
Minn.
(225 m.) | | San An-
tonio, Tex.
(240 m.) | | San Diego,
Calif.
(15 m.) | | Sault Ste.
Marie,
(230 m.) | | Seattle,
Wash.
(12 m.) | | Spokane,
Wash.
(603 m.) | | h. ; | Washing-
ton, D. C.
(24 m.) | | . С. | | | | | | | | | | Altitude
(meters)
m.s.l. | Observations
Direction | Velocity | Observations | Direction | Surface 500 1,000 1,000 2,000 2,500 3,000 4,000 5,000 6,000 8,000 10,000 12,000 14,000 14,000 14,000 14,000 1 | 29 261
29 276
27 292
25 287
22 266
22 24
22 260
21 286
21 256
20 252
18 239 | 6. 5
4. 9
2. 2. 3
7. 2. 0
1. 4
2. 1
3. 2. 1
3. 2. 1
9. 5
2. 11. 2
17. 9 | 30
30
30
27
25
22
19
19
17
12
11 | 174
174
174
183
205
216
229
243
262
251
221
218 | 5. 9
6. 5
6. 9
6. 5
7. 0
5. 3
4. 1
5. 6
8. 7 | 29
29
28
26
22
20
19
17
14
13
10 | 182
178
190
210
234
244
250
271
271
262
266 | 2. 6
4. 1
4. 9
5. 8
7. 2
7. 5
7. 3
8. 8
9. 0
11. 7 | 30
30
30
30
30
30
30
28
27
22
20
14
10 | 269
270
264
243
229
226
224
224
221
226
238
244
240
242 | 2. 2
3. 6
3. 8
4. 4
6. 1
7. 3
9. 6
11. 1
12. 0
13. 4
15. 1
17. 3
13. 0 | 28
28
28
27
21
19
15
13
12 | 153
152
169
198
236
252
247
242
241 | 1.7
1.3
2.2
4.9
6.7
9.8
14.2
13.9 | 29
29
28
28
25
19
15
11 | 208
228
246
260
268
259
257
254
265 | 1. 5
3. 0
3. 9
4. 7
6. 7
6. 4
7. 6
8. 5
5. 4 | 30
30
27
22
21
19
13 | 230
232
237
243
265
265
266 | 2. 1
2. 8
4. 4
5. 9
6. 8
8. 5
9. 5 | 29
29
29
29
25
24
23
20
18
16
12 | 129
139
140
150
162
170
165
152
155
160
156 | 3.6
4.9
5.1
4.8
2.9
3.3
3.3
4.1
4.3 | 30
30
25
24
23
23
20
19
13 | 269
275
264
265
243
241
230
226
226 | 4.0
2.9
1.7
1.9
4.1
6.2
8.4
10.0
9.5 | 28
28
26
24
20
18
15
11
10 | 283
284
274
275
282
291
291
294
297 | 2. 8
4. 2
5. 4
6. 1
8. 0
9. 9
13. 4
14. 3
15. 1 | 30
30
25
24
22
21
19
16
13
10 | 262
281
274
290
263
223
230
284
294
310 | 2. 6
1. 5
1. 3
1. 0
0. 8
1. 2
2. 2
3. 2
5. 9 | 30
28
27
21
19
13 | 253
225
232
244
244
238 | 2.0
3.0
3.0
2.8
3.9
4.6
2.8 | 30
30
28
26
24
20
19
15
13 | 219
222
249
276
287
296
291
291
289 | 2, 8
3, 6
3, 7
5, 5
7, 2
8, 9
9, 1
8, 3
9, 4 | Table 3.—Maximum free-air wind velocities (m. p. s.), for different sections of the United States, based on pilot-balloon observations during June 1943 | | | Sur | face to 2 | ,500 m | eters (m. s. l.) | | Between | n 2,500 a | nd 5,00 | 00 meters (m. s. l.) | Above 5,000 meters (m. s. l.) | | | | | | | | |---|---|---|--|---|--|---|---|---|--|--|--|---|--|--|--|--|--|--| | Section | Maximum velocity | Direction | Altitude (m.) m. s. l. | Date | Station | Maximum velocity | Direction | Altitude (m.) m. s. l. | Date | Station | Maximum velocity | Direction | Altifude (m.) m. s. l. | Data | Station | | | | | Northeast 1
East-Central 2
Southeast 3
North-Central 4
Central 4
South-Central 6
Northwest 7
West-Central 8
Southwest 9 | 38. 9
31. 1
24. 0
37. 9
32. 4
28. 2
38. 2
42. 6
28. 7 | Wnw.
W.
SSW.
WSW.
SW.
WSW.
NW.
SW. | 2, 280
2, 420
2, 090
1, 950
1, 230
1, 520
1, 740
2, 240
1, 910 | 5
12
27
1
1
2
7
22
12 | Portland, Maine Huntington, W. Va Charleston, S. C Detroit, Mich Wichita, Kans Amarillo, Tex Great Falls, Mont Casper, Wyo Roswell, N. Mex | 20. 8
44. 0
38. 5
32. 8
35. 0 | wnw.
w.
wnw.
wsw.
sw.
sw.
sw. | 5,000
5,000
4,660
4,900
5,000
4,970
4,780
3,800
4,200 | 6
30
9
4
1
2
23
21
2 | Caribou, Maine Washington, D. C Spartanburg, S. C Sault Ste. Marie, Mich. Omaha, Nebr. Amarillo, Tex Billings, Mont Ely, Nev Raton, N. Mex | 64. 0
31. 0
26. 4
69. 0
60. 0
36. 0
(68. 0
75. 0
58. 0 | nnw.
w.
n.
wnw.
sw.
wsw.
sw.
ssw.
nw. | 8, 790
7, 550
10, 180
11, 810
6, 180
9, 020
8, 740
9, 640
9, 780
5, 320 | 14
30
29
29
3
3
25
24
2
3 | Caribou, Maine. Huntington, W. Va. Key West, Fla. Bismark, N. Dak. Sioux City, Iowa. Amarillo, Tex. Billings, Mont. Burns, Oreg. Reading, Calif. Albuquerque, N. Mex | | | | Maine, Vermont, New Hampshire, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, Pennsylvania, and Northern Ohio. Delaware, Maryland, Virginia, West Virginia, Southern Ohio, Kentucky, Eastern lennessee, and North Carolina. South Carolina, Georgia, Florida, and Alabama. Michigan, Wisconsin, Minnesota, North Dakota, and South Dakota. Indiana, Illinois, Iowa, Nebraska, Kansas, and Missouri. ## RIVER STAGES AND FLOODS ### By BENNETT SWENSON Following a month of excessive precipitation and disastrous flooding in the interior of the country in May, the area of above-normal precipitation during June shifted slightly northward and westward. All States from the Rocky Mountains westward, except Arizona, had above-normal amounts, Utah having nearly four times the normal. East of the Rockies, most States north of the 36° latitude had above normal; the exceptions were Indiana, the upper Ohio Valley, the northern Appalachian Region and portions of the Middle Atlantic Excessive flooding occurred in northeast Texas, Kansas, Nebraska, Montana, Minnesota, Iowa, Missouri, Wisconsin, and northern New England. On the other hand, river stages during June were generally considerably below normal in the southern tier of States from Arizona to Florida, except in the lower Mississippi River. Atlantic Slope drainage.—Heavy rains on June 15-16 caused destructive floods in the upper Connecticut River Basin, and in the headwaters of the Androscoggin and Kennebec Rivers in Maine. The rainfall was in the form of heavy thundershowers which occurred almost entirely within a 24-hour period. In the Connecticut Basin above North Stratford, N. H., the rainfall ranged from 1 to nearly 5 inches. The Connecticut River reached a stage of 14.65 feet at North Stratford on the night of the 16th, exceeding the previous high stage of record, 14.6 feet in March 1936. Flood stage was not exceeded downstream from that point. Heavy rains on June 1-2 over the upper Susquehanna River Basin caused slight overflows in the Chenango River at Sherburne, N. Y., and in the Susquehanna River at Oneonta, N. Y. Light to moderate flooding in the Neuse River at Smithfield and Goldsboro, N. C., on June 9-16 resulted from heavy showers and thunderstorms on June 8-9. In the middle portion of the Neuse Basin the precipitation ranged from 1.25 to more than 4.5 inches. Upper Mississippi Basin.—Abnormally heavy rainfall during May continued into June in most of the upper Mississippi River watershed and caused high stages with - Mississippi, Arkansas, Louisiana, Oklahoma, Texas (except El Paso), and Western - * MISSISSIPPI, TENNESSER, TRANSSER, flooding generally in the tributaries and the main river during June. The Minnesota River, the Chippewa, Black, and Wisconsin Rivers in Wisconsin, the Raccoon and Des Moines Rivers in Iowa, and the Salt and Meramec Rivers in Missouri were the principal tributaries in flood. The Illinois River, which was in record flood in May continued above flood stage through most of June, and at Beardstown, Ill., the river did not recede to bankful until July 2. The main Mississippi River was in moderate to severe flood from the headwaters to the mouth of the Ohio River. At St. Louis, the Missouri River flood waters combined with the high water in the Mississippi River to produce a crest of 35.2 feet at St. Louis on June 26, only 3.7 feet below the high flood crest of May 24. The following report of the June flood in the headwaters of the Mississippi watershed above Hastings, Minn., is submitted by the official in charge, Weather Bureau office, Minneapolis, Minn.: Abnormally heavy rainfalls throughout the month of May continued during June over this basin and as a result the river was in flood for an unusually long period of time. The average rainfall for May, as determined from 18 stations in the headwaters basin, was 5.12 inches, or 2.13 inches above normal. For the month of June the average rainfall was 6.21 inches or 2.15 inches above normal. The run-off of the Rum River and the Mississippi River at Anoka, Minn., a few miles above Minneapolis, exceeded any June of record. However, the flood stage was not reached at Minneapolis, but was almost attained at St. Paul. The Minnesota River contributed a high discharge into the Mississippi River above the St. Paul gage as the United States Geological Survey records reveal that the peak discharge of the Minnesota River at Carver. Minn., was close to the maximum record of 23,000 c. f. s. Cautionary river forecasts were issued on June 4 for the Twin Cities and on June 15 for the Mississippi River from Little Falls to Hastings Dam and for the Minnesota River from New Ulm to Mendota, Minn. Damage was mainly agricultural because the low-lands along the streams were inundated. Early seeded crops were destroyed, pasture lands were reduced and damaged, and much difficulty was experienced in the care of livestock and poultry. total losses, practically all to prospective crops, has been placed at \$100,000. Savings as a result of the advisory warnings and daily advices to inquirers is placed at \$25,000. Missouri Basin.—Heavy rains occurred over most of Montana on June 2-3, and over the north central portion about the middle of the month. Largely as a result of the latter rains, floods occurred in the Marias, Teton, Musselshell, portions of the Yellowstone, and in the Missouri